Tuesday, November 5, 2013

Energi Alam




rumus rumus dasar Energy :
                                                         




Energi Terbarukan ( Renewable Energy ) 
Energi yang dapat diperbarui keberadaannya terdiri dari :
En Biomassa
En BioGas
En Surya ( Matahari )
En Angin
En Air
En Geothermal
Energy tak Terbarukan ( Non Renewable Energy )
Energi yang tidak dapat diperbarui keberadaannya
Fossil : Batu bara ( Coal ), Oil. Natural Gas, Nuclear Fussion, Fission

ENERGY BIOMASA  
Energi yang didapatkan dari tumbuh2an : Kayu,Daun
Cara mendapatkannya : dibakar , dijadikan arang kayu
Gbr 1. Bahan bahan Yang bisa di manfaatkan sebagai biomasa
Gbr2. Lokomotif uap dari biomasa (kayu bakar)
ENERGY BIOGAS
Gas Methana yang didapatkan dari Fermentasi ( Pembusukkan ) sampah, Kotoran hewan, Kotoran Manusia, yang terjadi pada pemanasan 30o-35o C,  Proses ini lebih cepat terjadi pada kondi si Tanpa Udara ( ANAEROBIC )
Proses fermentasi timbul Gas-gas antara lain :

Gbr 3. Proses Biogas

Gbr4. Hasil dari biogas
Energi yang dikandung

Energi yang  dikandung dalam Biogas atau biomassa tergantung dari Nilai Kalor bahan bakar dan kuantitas baahan bakanya


Energi Surya ( Matahari )


 Energi surya atau matahari telah dimanfaatkan di banyak belahan dunia dan jika dieksplotasi dengan tepat, energi ini berpotensi mampu menyediakan kebutuhan konsumsi energi dunia saat ini dalam waktu yang lebih lama. Matahari dapat digunakan secara langsung untuk memproduksi listrik atau untuk memanaskan bahkan untuk mendinginkan. Potensi masa depat energi surya hanya dibatasi oleh keinginan kita untuk menangkap kesempatan.Ada banyak cara untuk memanfaatkan energi dari matahari.
Tumbuhan mengubah sinar matahari menjadi energi kimia dengan menggunakan fotosintesis. Kita memanfaatkan energi ini dengan memakan dan membakar kayu. Bagimanapun, istilah “tenaga surya” mempunyai arti mengubah sinar matahari secara langsung menjadi panas atau energi listrik untuk kegunaan kita. dua tipe dasar tenaga matahari adalah “sinar matahari” dan “photovoltaic” (photo- cahaya, voltaic=tegangan)Photovoltaic tenaga matahari: melibatkan pembangkit listrik dari cahaya. Rahasia dari proses ini adalah penggunaan bahan semi konduktor yang dapat disesuaikan untuk melepas elektron, pertikel bermuatan negative yang membentuk dasar listrik.
Energi Angin ( Wind )
Cara mendapatkan Energi angin, dengan Kincir Angin yang merubah energi Kecept Menjadi energi gerak putar. Dengan mendapat putaran dari poros Kincir Angin dapat dipakai untuk meng gerakkan peralatan lain
Misalnya : Generator, Pompa.



Energi Air ( Water )




Pembangkit energi air skala mikro atau pembangkit tenaga mikrohidro semakin populer sebagai alternatif sumber energi, terutama di wilayah yang terpencil. Sistem pembangkit tenaga mikrohidro dapat dipasang di sungai kecil dan tidak memerlukan dam yang besar sehingga dampaknya terhadap lingkungan sangat kecil.
Pembangkit tenaga mikrohidro dapat digunakan langsung sebagai penggerak mesin atau digunakan untuk menggerakan generator listrik. Instalasi pembangkit listrik dengan tenaga mikrohidro biasa disebut sebagai Pembangkit Listrik Tenaga Mikrohidro, disingkat PLTMH. Daya yang dibangkitkan anatara 5 kW sampai dengan 100 kW

Energi Ombak ( Wave )




Energi Pasang-Surut ( Tidal )

Energi pasang surut atau tidal energy adalah energi yang dihasilkan dari pergerakan air laut akibat perbedaan pasang surut. Energi pasang surut merupakan energi yang terbarukan. Prinsip kerjanya sama dengan pembangkit listrik tenaga air, dimana air dimanfaatkan untuk memutar turbin dan menghasilkan energi listrik.

Seperti energi dari gelombang laut, energi pasang surut juga belum banyak digunakan. Namun, para ahli melihat pasang surut sebagai sumber energi alternatif yang menjanjikan di masa depan. Pasang surut dianggap menjanjikan karena mudah diprediksi tidak seperti energi matahari dan angin.

Salah satu faktor utama yang membuat teknologi pasang surut belum banyak diterapkan adalah biaya yang tinggi serta langkanya daerah yang memiliki perbedaan pasang surut besar.

 Energi O.T.E.C ( Ocean Thermal Energy Conversion )

 Konversi energi termal lautan (bahasa Inggris: ocean thermal energy conversion) adalah metode untuk menghasilkan energi listrik menggunakan perbedaan temperatur yang berada di antara laut dalam dan perairan dekat permukaan untuk menjalankan mesin kalor. Seperti pada umumnya mesin kalor, efisiensi dan energi terbesar dihasilkan oleh perbedaan temperatur yang paling besar. Perbedaan temperatur antara laut dalam dan perairan permukaan umumnya semakin besar jika semakin dekat ke ekuator. Pada awalnya, tantangan perancangan OTEC adalah untuk menghasilkan energi yang sebesar-besarnya secara efisien dengan perbedaan temperatur yang sekecil-kecilnya.

Permukaan laut dipanaskan secara terus menerus dengan bantuan sinar matahari, dan lautan menutupi hampir 70% area permukaan bumi. Perbedaan temperatur ini menyimpan banyak energi matahari yang berpotensial bagi umat manusia untuk dipergunakan. Jika hal ini bisa dilakukan dengan cost effective dan dalam skala yang besar, OTEC mampu menyediakan sumber energi terbaharukan yang diperlukan untuk menutupi berbagai masalah energi.

Konsep mesin kalor adalah umum pada termodinamika, dan banyak energi yang berada di sekitar manusia dihasilkan oleh konsep ini. Mesin kalor adalah alat termodinamika yang diletakkan di antara reservoir temperatur tinggi dan reservoir temperatur rendah. Ketika kalor mengalir dari temperatur tinggi ke temperatur rendah, alat tersebut mengubah sebagian kalor menjadi kerja. Prinsip ini digunakan pada mesin uap dan mesin pembakaran dalam, sedangkan pada alat pendingin, konsep tersebut dibalik. Dibandingkan dengan menggunakan energi hasil pembakaran bahan bakar, energi yang dihasilkan OTEC didapat dengan memanfaatkan perbedaan temperatur lautan disebabkan oleh pemanasan oleh matahari.


Energi Panas Bumi GeoThermal


nergi Geo (Bumi) thermal (panas) berarti memanfaatkan panas dari dalam bumi. Inti planet kita sangat panas- estimasi saat ini adalah,500 celcius (9,932 F)- jadi tidak mengherankan jika tiga meter teratas permukaan bumi tetap konstan mendekati 10-16 Celcius (50-60 F) setiap tahun. Berkat berbagai macam proses geologi, pada beberapa tempat temperatur yang lebih tinggi dapat ditemukan di beberapa tempat.
Menempatkan panas untuk bekerja
Dimana sumber air panas geothermal dekat permukaan, air panas itu dapat langsung dipipakan ke tempat yang membutuhkan panas. Ini adalah salah satu cara geothermal digunakan untuk air panas, menghangatkan rumah, untuk menghangatkan rumah kaca dan bahkan mencairkan salju di jalan.
Bahkan di tempat dimana penyimpanan panas bumi tidak mudah diakses, pompa pemanas tanah dapat membahwa kehangatan ke permukaan dan kedalam gedung. Cara ini bekerja dimana saja karena temparatur di bawah tanah tetap konstan selama tahunan. Sistem yang sama dapat digunakan untuk menghangatkan gedung di musim dingin dan mendinginkan gedung di musim panas.


Pembangkit listrik
Pembangkit Listrik tenaga geothermal menggunakan sumur dengan kedalaman sampai 1.5 KM atau lebih untuk mencapai cadangan panas bumi yang sangat panas. Beberapa pembangkit listrik  ini menggunakan panas dari cadangan untuk secara langsung menggerakan turbin. Yang lainnya memompa air panas bertekanan tinggi ke dalam tangki bertekanan rendah. Hal ini menyebabkan "kilatan panas" yang digunakan untuk menjalankan generator turbin. Pembangkit listrik paling baru menggunakan air panas dari tanah untuk memanaskan cairan lain, seperti isobutene, yang dipanaskan pada temperatur rendah yang lebih rendah dari air. Ketika cairan ini menguap dan mengembang, maka cairan ini akan menggerakan turbin generator.
Keuntungan Tenaga Panas Bumi
Pembangkit listrik tenaga Panas Bumi  hampir tidak menimpulkan polusi atau emisi gas rumah kaca. Tenaga ini juga tidak berisik dan dapat diandalkan. Pembangkit listik tenaga geothermal menghasilkan listrik sekitar 90%, dibandingkan 65-75 persen pembangkit listrik berbahan bakar fosil.
Sayangnya, bahkan di banyak negara dengan cadangan panas bumi melimpah, sumber energi terbarukan yang telah terbukti ini tidak dimanfaatkan secara besar-besaran.

Energi tak terbarukan
Batubara
Batu bara adalah salah satu bahan bakar fosil. Pengertian umumnya adalah batuan sedimen yang dapat terbakar, terbentuk dari endapan organik, utamanya adalah sisa-sisa tumbuhan dan terbentuk melalui proses pembatubaraan. Unsur-unsur utamanya terdiri dari karbon, hidrogen dan oksigen.

Batu bara juga adalah batuan organik yang memiliki sifat-sifat fisika dan kimia yang kompleks yang dapat ditemui dalam berbagai bentuk.

Analisis unsur memberikan rumus formula empiris seperti C137H97O9NS untuk bituminus dan C240H90O4NS untuk antrasit.



Minyak Bumi ( Crude Oil ) 
Rantai Hidrokarbon Minyak Bumi
Seperti kita kitahui dalam Kimia Organik bahwa senyawa hidrokarbon, terutama  yang parafinik dan aromatik, mempunyai trayek didih masing-masing, dimana panjang rantai hidrokarbon berbanding lurus dengan titik didih dan densitasnya. Semakin panjang rantai hidrokarbon maka trayek didih dan densitasnya semakin besar. Nah, sifat fisika inilah yang kemudian menjadi dasar dalam Proses Primer.
Jumlah atom karbon dalam rantai hidrokarbon bervariasi. Untuk dapat dipergunakan sebagai bahan bakar maka dikelompokkan menjadi beberapa fraksi atau tingkatan dengan urutan sederhana sebagai berikut :

  1. Gas
    Rentang rantai karbon : C1 sampai C5
    Trayek didih : 0 sampai 50°C
    Peruntukan : Gas tabung, BBG, umpan proses petrokomia.
  2. Gasolin (Bensin)
    Rentang rantai karbon : C6 sampai C11
    Trayek didih : 50 sampai 85°C
    Peruntukan : Bahan bakar motor, bahan bakar penerbangan bermesin piston, umpan proses petrokomia
  3. Kerosin (Minyak Tanah)
    Rentang rantai karbon : C12 sampai C20
    Trayek didih : 85 sampai 105°C
    Peruntukan : Bahan bakar motor, bahan bakar penerbangan bermesin jet, bahan bakar rumah tangga, bahan bakar industri, umpan proses petrokimia
  4. Solar
    Rentang rantai karbon : C21 sampai C30
    Trayek didih : 105 sampai 135°C
    Peruntukan : Bahan bakar motor, bahan bakar industri
  5. Minyak Berat
    Rentang rantai karbon dari C31 sampai C40
    Trayek didih dari 130 sampai 300°C
    Peruntukan : Minyak pelumas, lilin, umpan proses petrokimia
  6. Residu
    Rentang rantai karbon diatas C40
    Trayek didih diatas 300°C
    Peruntukan : Bahan bakar boiler (mesin pembangkit uap panas), aspal, bahan pelapis anti bocor.
Melihat daftar trayek hidrokarbon diatas nampak ideal sekali, dimana perbedaan jumlah atom karbonnya sangat jelas. Tapi pada kenyataannya dengan teknologi sekarang kondisi diatas teramat sangat sulit dicapai… oops, maaf menggunakan baya bahasa pleonasme
Proses pengolahan minyak bumi sendiri terdiri dari dua jenis proses utama, yaitu Proses Primer dan Proses Sekunder.  Sebagian orang mendefinisikan Proses Primer sebagai proses fisika, sedangkan Proses Sekunder adalah proses kimia. Hal itu bisa dimengerti karena pada proses primer biasanya komponen atau fraksi minyak bumi dipisahkan berdasarkan salah satu sifat fisikanya, yaitu titik didih. Sementara pemisahan dengan cara Proses Sekunder bekerja berdasarkan sifat kimia kimia, seperti perengkahan atau pemecahan maupun konversi, dimana didalamnya terjadi proses perubahan struktur kimia minyak bumi tersebut.

 Gas Alam
Gas alam sering juga disebut sebagai gas Bumi atau gas rawa, adalah bahan bakar fosil berbentuk gas yang terutama terdiri dari metana CH4). Ia dapat ditemukan di ladang minyak, ladang gas Bumi dan juga tambang batu bara. Ketika gas yang kaya dengan metana diproduksi melalui pembusukan oleh bakteri anaerobik dari bahan-bahan organik selain dari fosil, maka ia disebut biogas. Sumber biogas dapat ditemukan di rawa-rawa, tempat pembuangan akhir sampah, serta penampungan kotoran manusia dan hewan.
Komposisi kimia

Komponen utama dalam gas alam adalah metana (CH4), yang merupakan molekul hidrokarbon rantai terpendek dan teringan. Gas alam juga mengandung molekul-molekul hidrokarbon yang lebih berat seperti etana (C2H6), propana (C3H8) dan butana (C4H10), selain juga gas-gas yang mengandung sulfur (belerang). Gas alam juga merupakan sumber utama untuk sumber gas helium.

Metana adalah gas rumah kaca yang dapat menciptakan pemanasan global ketika terlepas ke atmosfer, dan umumnya dianggap sebagai polutan ketimbang sumber energi yang berguna. Meskipun begitu, metana di atmosfer bereaksi dengan ozon, memproduksi karbon dioksida dan air, sehingga efek rumah kaca dari metana yang terlepas ke udara relatif hanya berlangsung sesaat. Sumber metana yang berasal dari makhluk hidup kebanyakan berasal dari rayap, ternak (mamalia) dan pertanian (diperkirakan kadar emisinya sekitar 15, 75 dan 100 juta ton per tahun secara berturut-turut).
Komponen %
Metana (CH4) 80-95
Etana (C2H6) 5-15
Propana (C3H8) and Butana (C4H10) < 5
 


Energi Nuklir

Energi potensial nuklir adalah energi potensial yang terdapat pada partikel di dalam nukleus atom.

Partikel nuklir seperti proton dan neutron tidak terpecah di dalam proses reaksi fisi dan fusi, tapi kumpulan dari mereka memiliki massa lebih rendah daripada jika mereka berada dalam posisi terpisah/ sendiri-sendiri. Adanya perbedaan massa ini dibebaskan dalam bentuk panas dan radiasi di reaksi nuklir (panas dan radiasinya mempunyai massa yang hilang, tapi terkadang terlepas ke sistem, dimana tidak terukur). Energi matahari adalah salah satu contoh konversi energi ini. Di matahari, proses fusi hidrogen mengubah 4 miliar ton materi surya per detik menjadi energi elektromagnetik, yang kemudian diradiasikan ke angkasa luar.


    

No comments:

Post a Comment